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Phototransduction by Retinal
Ganglion Cells That Set the

Circadian Clock
David M. Berson,* Felice A. Dunn,† Motoharu Takao†

Light synchronizes mammalian circadian rhythms with environmental time by
modulating retinal input to the circadian pacemaker—the suprachiasmatic
nucleus (SCN) of the hypothalamus. Such photic entrainment requires neither
rods nor cones, the only known retinal photoreceptors. Here, we show that
retinal ganglion cells innervating the SCN are intrinsically photosensitive. Un-
like other ganglion cells, they depolarized in response to light even when all
synaptic input from rods and cones was blocked. The sensitivity, spectral tuning,
and slow kinetics of this light response matched those of the photic entrainment
mechanism, suggesting that these ganglion cells may be the primary photo-
receptors for this system.

The SCN is the circadian pacemaker of the
mammalian brain, driving daily cycles in ac-
tivity, hormonal levels, and other physiolog-
ical variables. Light can phase-shift the en-
dogenous oscillator in the SCN, synchroniz-
ing it with the environmental day-night cycle.
This process, the photic entrainment of circa-
dian rhythms, originates in the eye and in-
volves a direct axonal pathway from a small
fraction of retinal ganglion cells to the SCN
(1–3). A striking feature of this neural circuit
is its apparent independence from conven-
tional retinal phototransduction. In function-
ally blind transgenic mice lacking virtually
all known photoreceptors (rods and cones),
photic entrainment persists with undimin-
ished sensitivity (4). Candidate photorecep-
tors for this system are nonrod, noncone ret-
inal neurons, including some ganglion cells,
that contain novel opsins or cryptochromes
(5–8).

To determine whether retinal ganglion
cells innervating the SCN are capable of pho-
totransduction, we labeled them in the rat
retina by retrograde transport of fluorescent
microspheres injected into the hypothalamus

(9). In isolated retinas, whole-cell recordings
were made of the responses of labeled gan-
glion cells to light (10) (Fig. 1, A to E). In
most of these cells (n 5 150), light evoked
large depolarizations with superimposed fast
action potentials (Fig. 1, E to G) (11). The
light response persisted during bath applica-
tion of 2 mM cobalt chloride (Fig. 1F; n 5
42), which blocks calcium-mediated synaptic
release from rods, cones, and other retinal
neurons (12). In contrast, other ganglion cells
prepared and recorded under identical condi-
tions but not selectively labeled from the
SCN (control cells) lacked detectable re-
sponse to light even without synaptic block-
ade (47/50 cells; Fig. 1, I and J) (13). This is
presumably because rod and cone photopig-
ments were extensively bleached (10). A few
control cells (3/50) exhibited weak, evanes-
cent responses to light, but these were abol-
ished by bath-applied cobalt (n 5 2).

To ensure blockade of conventional syn-
aptic influences from rods and cones, we
supplemented cobalt with a mixture of drugs
that independently disrupted both the gluta-
matergic synapses crucial to vertical signal
transfer through the retina and the ionotropic
receptors responsible for most inhibitory in-
fluences on ganglion cells (14). Robust light
responses persisted in SCN-projecting gan-
glion cells under these conditions (Fig. 1G;
n 5 7). Furthermore, the somata of these

ganglion cells exhibited photosensitivity even
when completely detached from the retina by
microdissection (Fig. 1H; n 5 3). These light
responses were not an artifact of photic exci-
tation of either of the intracellular fluoro-
phores we used, as the action spectrum of the
light response (Fig. 2C) differed from the
absorption spectra of both the retrograde trac-
er and Lucifer Yellow (LY) used for intracel-
lular staining. Also, light-evoked increases in
spike frequency were detectable in extracel-
lular recordings, before patch rupture and LY
dye filling (n 5 5). Whole-cell recordings
revealed normal light responses when LY
was omitted from the internal solution (n 5
8). In contrast, control cells lacked cobalt-
resistant light responses even when labeled
with both fluorescent beads and LY (n 5 12;
Fig. 1I). These data indicate that retinal gan-
glion cells innervating the SCN are intrinsi-
cally photosensitive.

To determine if these cells could serve as
the primary photoreceptors for circadian en-
trainment, we assessed congruence between
their photic properties and those of the entrain-
ment mechanism. The responses of a single cell
to narrow-band stimuli of various intensities
showed that at each wavelength, peak depolar-
ization increased with stimulus energy (Fig. 2,
A and B). Intensity-response curves exhibited a
consistent slope when plotted in semilogarith-
mic coordinates (Fig. 2B), as expected for re-
sponses mediated by a single photopigment
(principle of univariance). The horizontal dis-
placements of the curves from one another re-
flect the spectral dependence of the pigment’s
quantum efficiency and yield the spectral sen-
sitivity function shown in Fig. 2C (red curve).
Other cells exhibited similar action spectra (Fig.
2C, green curve) (15). These action spectra
closely matched that predicted for a retinal1-
based pigment with peak sensitivity at 484 nm
(Fig. 2C, black). They also resemble action
spectra derived behaviorally for circadian en-
trainment in rodents (16, 17 ), as expected if
these ganglion cells function as primary
circadian photoreceptors (18). Judging
from available spectral evidence, the pho-
topigment in these ganglion cells is more
likely to be a retinaldehyde-based opsin
such as melanopsin (5, 19, 20) than a fla-
vin-based cryptochrome (21).
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The threshold and dynamic range of the
light response in these ganglion cells were
also similar to those of the entrainment mech-
anism. Threshold retinal irradiance for a full-
field stimulus was about 5 3 1011 photons
s21 cm22 at 500 nm (;lmax; n 5 3) . This
corresponds to an in vivo corneal irradiance
of ;2 3 1013 photons s21 cm22, comparable
to thresholds for circadian phase shifts in
rodents (;1010 to 1013 photons s21 cm22 at
500 nm) (22–24) and to ocular illumination
by the dawn sky. Response saturation in pho-
tosensitive ganglion cells occurred at irradi-

ances ;3 logarithmic units above threshold
(Figs. 2B and 3C), matching the dynamic
range of entrainment behavior (16, 23, 24)
and many SCN neurons [(25), but see (26)].

The circadian entrainment mechanism in-
tegrates light energy over very long time
scales, exhibits little adaptation, and responds
poorly to brief stimuli (24, 27). Similar fea-
tures were evident in the behavior of photo-
sensitive ganglion cells. Constant illumina-
tion depolarized cells tonically and elevated
spike frequency, and the amount of depolar-
ization was monotonically related to stimulus

energy (Fig. 3). Response kinetics were much
slower than typical for ganglion cells. Laten-
cies to response onset (Vm . 3 standard de-
viations above baseline) were typically sev-
eral seconds and ranged from several hundred
milliseconds for saturating stimuli (Figs. 1F
and 2A) to ;1 min near threshold (Fig. 3B,
bottom trace). Latencies from stimulus onset
to peak depolarization were typically 10 to
20 s (range: ;2 s to 2 min) and inversely

Fig. 1. Labeling and light responses of rat ganglion cells innervating the SCN. (A) Fluorescence
photomicrograph showing deposit (white arrow) of mixed red and green fluorescent microspheres
(appears as yellow) in the SCN. The red arrows mark boundaries of contralateral SCN. Acridine
orange was used for green fluorescent Nissl counterstain. ox, optic chiasm; III, third ventricle. Scale
bar, 500 mm. (B) Two ganglion cells back-filled from the SCN, photographed in whole mount with
rhodamine filter set to show retrograde labeling. The cell at right was patched and recorded. Scale
bar, 20 mm. (C) Same cells viewed under blue excitation, to show LY filling of the recorded cell. (D)
Camera lucida drawing of cell filled in (C), as viewed in the whole mount after antibody to LY
immunostaining (35). Scale bar, 100 mm. (E) Strong depolarization and fast action potentials
evoked in this cell (D) by a light pulse indicated by step in horizontal line below. (F to H) Evidence
for the intrinsic photosensitivity of ganglion cells selectively retrolabeled from the SCN. (F and G)
The light response apparent in control Ames solution (black traces) persisted during bath applica-
tion of 2 mM CoCl2 (red traces) either alone (F) or in combination with a drug mixture blocking
ionotropic and metabotropic glutamate receptors as well as ionotropic GABA and glycine receptors
(G) (14). The absence of evoked spikes during drug application probably reflects depolarization
block (tonic sodium channel inactivation) because weaker stimuli evoked spikes (40). (H) Light
response recorded from the isolated soma of a ganglion cell retrolabeled from the SCN. The cell
body was bathed in an enzyme solution (papain, ;20 units/ml) with a puffer pipette and then
mechanically removed from the retina with an empty patch pipette under visual control, ampu-
tating its dendrites and axon. (I and J) Control recordings from a conventional ganglion cell (Fig. 4C)
labeled nonselectively by a deposit of rhodamine beads in the optic chiasm and filled with LY. Light
evoked no detectable response (I), although synaptic transmission was not blocked and responses
to current injection were normal ( J) (150 pA). Retinal irradiance of stimuli (in photons s21 cm22):
(E) 7 3 1012, (F) 2.6 3 1013, (G) 7.2 3 1012, (H) ;1 3 1013, and (I) ..9 3 1013. Stimuli in (E),
(F), and (G) were 500 nm.

Fig. 2. Spectral tuning of light response in
photosensitive ganglion cells. (A) Voltage re-
sponses of a single cell to a 500-nm narrow-
band stimulus at indicated intensities (in log10
photons s21 cm22). Baseline ; 260 mV for
each trace. (B) Plots of peak depolarization as a
function of log retinal irradiance for each of
several narrow-band spectral lights (400- to
600-nm wavelength, as indicated; 10-nm width
at half height); same cell as in (A). Peak was
obtained from a 1-s boxcar average of raw
voltages. (C) Spectral sensitivity functions de-
rived for photosensitive ganglion cells from rel-
ative displacements of intensity-response func-
tions along the abscissa in (B). Red curve: same
cell as in (A) and (B). Green curve: group data
for all cells (n 5 34; number of cells tested per
wavelength as follows: 400 nm, 5; 420 nm, 3;
440 nm, 2; 460 nm, 4; 480 nm, 4; 500 nm, 34;
520 nm, 7; 540 nm, 5; 570 nm, 2; and 600 nm,
2). Black curve: nomogram for retinal1-based
photopigment with lmax of 484 nm (41), fit by
least squares method to the group data.
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related to stimulus energy. Repolarization af-
ter intense stimuli required several minutes
and was sometimes punctuated by spontane-
ous depolarizations and spike bursts lasting
up to a minute each (Fig. 3B).

Photosensitive ganglion cells shared a com-
mon morphology (Fig. 4, A and B), as revealed
by intracellular staining with LY (28). Somata
were intermediate in diameter among neurons
of the ganglion cell layer (14.7 6 1.2 mm,
mean 6 SD; n 5 18). Many cells sent an axon
into the optic fiber layer; those lacking one had
presumably lost it during mechanical exposure
of the soma before recording. The sparsely
branching, tortuous dendrites of these cells ar-
borized primarily in the outer part (OFF sub-
layer) of the inner plexiform layer (IPL; Fig.
4B). Although some dendrites coursed within
the inner IPL (ON sublayer) for 100 to 200 mm,
nearly all terminated in the OFF sublayer. Such
stratification is highly unusual for ganglion

cells depolarized by light [but see (29, 30)].
Dendritic fields were large (diameter 497 6
115 mm; mean 6 SD; n 5 21). Stimuli illumi-
nating the dendrites but not the soma consis-
tently evoked light responses (31). Control
cells, which lacked cobalt-resistant light re-
sponses, had markedly different dendritic mor-
phology (e.g., Fig. 4C).

These data identify a distinct ganglion cell
type in the mammalian retina with character-
istic dendritic profile and stratification pat-
tern, extraordinarily sluggish and tonic light
responses encoding ambient light level, and
axonal projections to the SCN. The most
striking feature of this cell type, however, is
its apparent capacity for intrinsic phototrans-
duction. The correspondences between the
photic properties of these cells and those of
the entrainment mechanism suggest that these
unconventional ganglion cells may represent
the primary photoreceptors for synchronizing
the circadian clock to environmental time.

Melanopsin (5, 7) is probably the photopig-
ment responsible for the intrinsic sensitivity of
these cells to light, as it is selectively expressed
in the small subset of ganglion cells that are
intrinsically photosensitive and innervate the
SCN (32, 33). In amphibians, certain nonretinal
cells contain melanopsin, and these cells, too,
are photosensitive, with action spectra resem-
bling those of photosensitive rat ganglion cells
(Fig. 2C) (5, 19, 20). Melanopsin exhibits
marked sequence similarity to invertebrate
opsins (5, 7), which, unlike vertebrate opsins,
retain their photoisomerized retinaldehyde
chromophore and typically trigger depolarizing
light responses when activated. These proper-
ties may help to explain why photosensitive
ganglion cells differ from conventional retinal
photoreceptors in their response polarity and
lack of dependence on the pigment epithelium.
Cryptochromes, blue-light–absorbing, flavin-

based pigments, have been proposed as circa-
dian photopigments (8), but spectral evidence
(Fig. 2C) (21) weighs against their mediating
the light response in intrinsically photosensitive
ganglion cells.

Note added in proof: Further evidence for
the presence of melanopsin in ganglion cells
innervating the SCN has emerged (34).
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Metabolic Enzymes of
Mycobacteria Linked to

Antioxidant Defense by a
Thioredoxin-Like Protein

R. Bryk,1,4* C. D. Lima,2,5* H. Erdjument-Bromage,3

P. Tempst,3,5,6 C. Nathan1,4,6†

Mycobacterium tuberculosis (Mtb) mounts a stubborn defense against oxidative
and nitrosative components of the immune response. Dihydrolipoamide de-
hydrogenase (Lpd) and dihydrolipoamide succinyltransferase (SucB) are com-
ponents of a-ketoacid dehydrogenase complexes that are central to interme-
diary metabolism. We find that Lpd and SucB support Mtb’s antioxidant defense.
The peroxiredoxin alkyl hydroperoxide reductase (AhpC) is linked to Lpd and
SucB by an adaptor protein, AhpD. The 2.0 angstrom AhpD crystal structure
reveals a thioredoxin-like active site that is responsive to lipoamide. We pro-
pose that Lpd, SucB (the only lipoyl protein detected in Mtb), AhpD, and AhpC
together constitute a nicotinamide adenine dinucleotide (reduced)–dependent
peroxidase and peroxynitrite reductase. AhpD thus represents a class of thi-
oredoxin-like molecules that enables an antioxidant defense.

Mtb, the leading cause of death from a single
bacterial species, is restrained from prolifer-
ation in most infected individuals by oxida-
tive and nitrosative stress imposed in part by
inducible nitric oxide synthase (1, 2). Yet
despite the immune response, viable myco-
bacteria persist. Bacterial persistence has di-
rected our attention to Mtb’s defenses against
oxidative and nitrosative stress.

Mtb peroxiredoxin alkyl hydroperoxide re-
ductase (AhpC), a member of the peroxiredoxin
family of nonheme peroxidases, protects heter-
ologous bacterial and human cells against oxi-
dative and nitrosative injury (3, 4). The redun-
dancy of peroxiredoxins in Mtb complicates
interpretation of the phenotype of an ahpC-
deficient mutant (5). AhpC metabolizes perox-
ides (6) and peroxynitrite (7) via a conserved
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